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Interval estimation problem.

Assume that we observe a sample of size n of data following a certain (unknown)
distribution F:

X = (T1,...,xp), Wwithaz; ~ F Vie{l,...,n}

We focus on the problem of estimating one (or more) parameter 6 of the distri-
bution F'. We denote it as 6 = t(F).

Assume that § = ¢(F) is the plug-in estimator of 6.
Is it possible to build confidence intervals based on the Bootstrap estimate of
the standard error?
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For ease of notation, we will define the properties for a one-tailed confidence
interval of level 1 — a: (04, +0).

A

Definition 1 A confidence interval (64,+00) of level 1 — « for the parameter
6 is said to be exact if, for all a € (0,1):

PO < 0,) = a.
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For ease of notation, we will define the properties for a one-tailed confidence
interval of level 1 — a: (04, +0).

A

Definition 1 A confidence interval (6,,+00) of level 1 — « for the parameter
6 is said to be exact if, for all a € (0,1):

PO < 0,) = a.

In general, we will work with asymptotic confidence intervals, i.e., confidence
intervals for which exactness holds just asymptotically, for n — oo. For such
intervals we can define the properties of accuracy and correctness:
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Definition 2 A confidence interval (éa, +00) of level 1 — « for the parameter
0 is said to be first-order accurate if, for all o € (0,1):

P9 < 0,) = a+ O(n~1/?).

A confidence interval (éa, +00) of level 1 — « for the parameter 6 is said to be
second-order accurate if, for all a € (0,1):

A

PO < 8,) =a+0m1).
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Definition 3 Let éemcta be the endpoint of an exact confidence interval of level

A

1 — « for the parameter 0. A confidence interval (0,,+00) of level 1 — « for the
parameter 0 is said to be first-order correct if, for all o € (0,1):

éa — é\exactoé + O(n_l) — éexacta + O(n_1/2) - 0.

A confidence interval (éa, +00) of level 1 — « for the parameter 0 is said to be
second-order correct if, for all o € (0,1):

éa — éexacta + O(?’L—?)/Q) — éexacta + O(n_l) - 0.
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1. Asymptotic normal confidence intervals.
2. Bootstrap-t confidence intervals.

3. Percentile intervals.

4. BCa confidence intervals.

5. ABC confidence intervals.
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1. Asymptotic normal confidence intervals.
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It is often possible to show asymptotic results on the estimator 0. In many cases
we have that

0—0
se()

— N(0,1).
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It is often possible to show asymptotic results on the estimator 0. In many cases

we have that A
0—0
se()

— N(0,1).

&symptotic confidence interval for theta with (asymptotic)

coverage probability 1-alpha:

A

|:9 - Zoc/QS/éBa é + Za/QS/éB:|

\

~
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&symptotic confidence interval for theta with (asymptotic) A

coverage probability 1-alpha:

A

0 — za/QS/éB: é T Za/QS/éB}

- J

Properties.

o If z; ~ N(u,0?) and 6 = p, the interval is exact.

~

o It gezée) — N (0, 1), the interval is asymptotically exact.

e It is often possible to prove first order accuracy and correctness. However
the properties of this interval strictly depend on the form of the estimator

6.
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Example: test score data.

B=100: (0.8383, 0.7048)

Histogram of t

o
N ]
o
w J—
]
(O_ ]
o
@ —]
= 3
a Y 7
o
LO_ ]
o
Al — ,,,’
o o)
LO_ ]
o
o I o
| I I I I | I I I I I
0.50 0.60 0.70 -2 -1 0 1 2
t* Quantiles of Standard Normal

alessia.pini@unicatt.it 13



&V UNIViRsTA
(TR CATTOLICA

< del Sacro Cuore
N

ASYMPTOTIC NORMAL
CONFIDENCE INTERVAL

Studio

Example: test score data.

Here a low number of replications is ok, since we are

B=100: (0.8333, 0.7048) using only the point estimate of sd to build the interval.
However, it is difficult to understand from the QQplot if
Histogram of t the distribution is approximately Normal.
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Example: test score data.
Here a low number of replications is ok, since we are

B = 10000: (0.5249, 0.7097) using only the point estimate of sd to build the interval.
However, it is difficult to understand from the QQplot if

Histogram of t the distribution is approximately Normal.
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2. Bootstrap-t confidence intervals.
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The idea of the Bootstrap-t interval is based on a Bootstrapped version of the
Student-t pivotal statistic:
00

se(0)
The statistic 1" is used for building Normal-theory confidence interval, since its
distribution does not depend on unknown parameters (Student-¢ distribution

with n — 1 degrees of freedom).
Since the quantiles ¢, ,,—1 of the ¢ distribution are known, then:

T

IED(tl—(Jz/Q,w,—l <T< ta/Q,n—l) =1—-a

A

P (9 — Se(é)ta/g,n_l S 0 S é — Se(é)tl_a/27n_1) =1 —«

(é — SG(é)ta/Q’n_l,é — Se(é)ta/g,n_l)

Confidence interval for theta with coverage probability 1-alpha.
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JIdea. Instead of trying to elicit the distribution of 1" under parametric as-
sumptions, we can generate a sample of B Bootstrap replications of the statistic
T'. In detail, As in the point estimation case, we can generate B Bootstrap sam-
ples xJ,...,xp, which mimic sampling from the original model. Then, we can
compute for each Bootstrap sample b the following quantity, mimicking the
Student-t pivotal statistic 7"

., Oy —10
Zy Y,
We have B Bootstrap copies Z7,...,Z5, and we can define the quantiles ¢,
such that:
Mg 2t}
= =

Finally, the Bootstrap-t confidence interval of level 1 — « is:

[ (é - ta/QS/éBaé - tl—oz/QS/'éB> }

alessia.pini@unicatt.it 18
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e We need to estimate S¢;, that is the standard error of the bth Bootstrap
sample: §e; = e(6F). If 8 is simple, we usually have formulas that we
can use (together with the plug-in estimates). Otherwise, we can apply
another Bootstrap to compute it = two nested layers of Bootstrapping.

e To compute the point estimate Se, we can use around By ~ 100 replica-
tions. To compute the confidence interval, we need By ~ 1000 replications.
This approach requires at least By - B ~ 100000 Bootstrap replications.

e This interval is not invariant under transformations: if we apply a non
linear (monotone) function to the parameter, compute the CI, and then
transform back the interval endpoints, we do not find necessarily the same
result. In addition, some transformations have better properties than oth-
ers, and we could use another Bootstrap layer to find the transformation

itself cee ?

®
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Properties.

e Not invariant under increasing transformations. If m is an increasing
function and (0r_, 60y ) is a Bootstrap-t confidence interval of level 1 — «

for 6, the confidence interval for m(0) is not necessarily (m(dy,_), m(0v.)).

e The Bootstrap-t interval is second-order accurate and second-order cor-
rect.

e To avoid computation of se;, it is possible to use the non-studentized

approximate pivot 6 — 0. This gives a confidence interval that is only
first-order accurate and correct.

alessia.pini@unicatt.it
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Example: test score data.

B =100: (0.8277, 0.75:29)

Histogram of boot.score$t ECDF of Bootstrap replications
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Example: test score data.

B = 10000: (0.5226, 0.7165) VERY LONG!!

Histogram of boot.score2$t ECDF of Bootstrap replications
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3. Percentile intervals.
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For percentile intervals we use directly the empirical quantiles of éf, e

The 1 — o confidence interval is then:

[%—wzw 9@/2)}

Empirical quantiles of the Bootstrap
replications distribution

alessia.pini@unicatt.it
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For percentile intervals we use directly the empirical quantiles of éf, ..., 0%,
The 1 — « confidence interval is then:

[921—@/2» %/2)]

Properties:

e It is invariant through monotone transformations (since any monotone
transformation preserve the ordering of the quantities ég‘): for all increas-
ing function m, if (fz_,0y,) is a Bootstrap-t confidence interval of level
1 — o for 0, the confidence interval for m(0) is (m(01, ), m(0y.)).

e It is first-order accurate and correct, only if the distribution of 0 is sym-
metric!

e In practice, if 6 is a biased estimator, for instance so that
f ~ N (0 + Bias, Var(f))
the percentile interval does not generally behave well.

e It should be regarded as a prediction interval for f instead of a confidence
interval for 6.

alessia.pini@unicatt.it 25
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Example: test score data.

B =100: (0.5285, 0.6993)

Histogram of boot.score$t ECDF of Bootstrap replications
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Example: test score data.

B = 10000: (0.5249, 0.7080)

Histogram of boot.score2$t ECDF of Bootstrap replications
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4. BCa confidence intervals.

alessia.pini@unicatt.it 28



£ 45t BC, CONFIDENCE INTERVAL
X M( del Sacro Cuore A

BC, confidence intervals: Bias Corrected and Accelerated confidence
intervals.

Remember that percentile intervals are [ (1-a/2)> a /2)}.

The idea of BC, confidence intervals is to introduce a correction to the previous
interval to take into account that # might be biased. The interval is:

95,02

alessia.pini@unicatt.it 29
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BC, confidence intervals: Bias Corrected and Accelerated confidence
intervals. ) )
Remember that percentile intervals are [ (1-a/2): a /2)}.

The idea of BC, confidence intervals is to introduce a correction to the previous
interval to take into account that # might be biased. The interval is:

95,02

where:

20 + 21_q4
041:1—q)<20—|— 0 = /2 )

1 —a(Zo + z1-a/2)

20 + 24
Qy=1—® (54— "2
1 —a(Zo + zq/2)

alessia.pini@unicatt.it 30
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BC, confidence intervals:

intervals.

Remember that percentile intervals are [ (1-a/2): a /2)}.

Bias Corrected and Accelerated confidence

The idea of BC, confidence intervals is to introduce a correction to the previous
interval to take into account that # might be biased. The interval is:

where:

Cdf of the
standard
Normal
distribution

95,02

20 + 21_q4
Oélzl—q)<730—|— 0 = /2 )

1 —a(Zo + z1-a/2)

20 + 24
Qo =1=® (20 + — 2/
1 —a(Zo + zq/2)

Quantiles of the
standard
Normal
distribution

alessia.pini@unicatt.it
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BC, confidence intervals: Bias Corrected and Accelerated confidence
intervals. ) )
Remember that percentile intervals are [ (1-a/2): a /2)}.

The idea of BC, confidence intervals is to introduce a correction to the previous
interval to take into account that # might be biased. The interval is:

95,02

where:
504 2 Quantiles of the
Cdf of the ap=1—® (730 + AO R L-a/2 ) standard
standard L —a(Z +21-as2) Normal
Normal = . 20 + Za)2 distribution
distribution az=1-% (ZO L= (2o + Za/2)>

Zo: bias correction parameter

a: acceleration parameter

alessia.pini@unicatt.it 32
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"

a1:1—®(20+

042:1—(13<,730—|—

\

20 T R1—qa/2

2 Zn: blas correction parameter
1 —a(2o + Zl—a/2>) L b

zZo + o2

) a: acceleration parameter

1 —&(204—2@/2) )

e [fa=20=0=

1 = 1 — (I)<Zl—oz/2> =1- Oé/2
az =1—®(24/2) = /2

e In the general case:

> = !

(—#{Qé<9}). Measures the median bias of é, that is the

difference between the median of #* and 6. If #* is centered on 6:
2o = @_1(05) = 0.

> 4=

n A N 3
Zi:l (6(').] _e(i)J)

6(371 (0, —0(),)2)3/2’

where é(.) , is the Jacknife estimate and

é(i) , are the Jacknife replications. corrects from the fact that se(é)
can possibly depend on 6.

alessia.pini@unicatt.it
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ﬁtatistical model for BC, confidence intervals. \
Assume that there exists an increasing transformation m such that ¥ = m(6),

and ¢ = m(f) gives: A
Y — 1

sew

~ N(—Zo, 1)

and assume that, for an appropriate reference point :

K s€y = sy, (1 + a(y — 1)) /

alessia.pini@unicatt.it 34
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ﬁtatistical model for BC, confidence intervals. \
Assume that there exists an increasing transformation m such that ¥ = m(@),

and ¢ = m(f) gives: A
Y —

Sew

~ N(—Zo, 1)

and assume that, for an appropriate reference point )g:

K s€y = sy, (1 + a(y — 1)) /

If this model holds exactly, an exact upper 1 — « limit (of a two-tailed interval)
for v is:

A ~ 20 T Z1—a/2
a =YW+ se; :
Vo =¥ Y1 —a(z0 + 21-a/2)

Mapping back this limit in the original # parameter space we have the upper

limit for 6: N
h. — G- <<I> (zo 4T Plma/ )) |
1 —a(z0 + z1-qa/2)

This model also gives the estimates of 2y = P(* < 6) and a.
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Properties.

e It is invariant through monotone transformations: for all increasing func-
tion m, if (dr_,0y.) is a BC, confidence interval of level 1 — « for 6, the

confidence interval for m(8) is (m(05_), m(0y.)).
e It is second-order accurate and correct.

e It requires a large number of Bootstrap replications to be computed with
a low approximation error.

alessia.pini@unicatt.it 36
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Example: test score data.

B = 100: (0.5141, 0.6972)

Histogram of boot.score$t ECDF of Bootstrap replications
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Example: test score data.

B = 10000: (0.5224, 0.7059)

Histogram of boot.score2$t ECDF of Bootstrap replications
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5. ABC confidence intervals.
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» Based on an analytical approximation of the BC, confidence intervals (instead

of MC replications).

« Requires that the estimator of theta is smooth (is first and second order
differentiable).

» Uses Taylor expansion to approximate the endpoints.
« Itisinvariant under monotone transformations.
» Itis second-order accurate and correct (if the estimator is smooth).

» In order to use it, it is necessary to find the expression of theta as a function
of the vector P, collecting the proportion of units in the bootstrap sample

that equals the jth original data point.
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Example: test score data.

The result does not depend on B: (0.5180939, 0.7064266)

Histogram of boot.score2$t ECDF of Bootstrap replications
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Let us assume that we observe a sample x of size n from unknown F'. Define
i = E[X;]. We now want to test the following hypotheses:

Hy : pz = po
Hy @ py # po

alessia.pini@unicatt.it
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Let us assume that we observe a sample x of size n from unknown F'. Define
i = E[X;]. We now want to test the following hypotheses:

Hy : pz = po
Hy @ py # po

Classical approach: under the assumption of normality of data or of large
sample size, we find the (eventually approximate) distribution F{ of a test statis-
tic t(X) under the null hypothesis Hy. Using such distribution, we find the level
a rejection region of the test, or the test p-value:

p = Pu, (H(X) 2 t(x)).

alessia.pini@unicatt.it
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Let us assume that we observe a sample x of size n from unknown F'. Define
te = E[X;]. We now want to test the following hypotheses:

Hy : pz = po
Hy @ py # po

Classical approach: under the assumption of normality of data or of large
sample size, we find the (eventually approximate) distribution F{ of a test statis-
tic t(X) under the null hypothesis Hy. Using such distribution, we find the level
a rejection region of the test, or the test p-value:

p = Pu, (H(X) 2 t(x)).

Bootstrap approach: approximate the distribution Fj using an empirical
estimate F{; and compute the p-value by drawing data sets from Fj.

alessia.pini@unicatt.it
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Problem: the empirical distribution F is not a good candidate for estimating
Iy, since it does not obey to Hy. We first have to impose that Hj is true, that

1S by = J40-

alessia.pini@unicatt.it

46



A LvrsTa TESTING THE MEAN OF ONE

A > CATTOLICA

P
= L
X < del Sacro Cuore
EDIOL AN
.

Problem: the empirical distribution F is not a good candidate for estimating
Iy, since it does not obey to Hy. We first have to impose that H is true, that

1Sy = UgQ-

However, we can first translate data so that their sample mean is exactly puy.
Then, we compute the empirical distribution F{, of translated data, and use it
to generate Bootstrap replications and to approximate the null distribution of
the test statistic.

We find a procedure for testing Hy against H; with an approximate level a.

The level of the test is asymptotically correct (thanks to convergence of Fy

to Fo)
15 .
‘ 3 1]

WA\
A\
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(Algorithm for testing the mean of one population.

e Translate the data so that their sample mean is pg:

2 =Ty — T+ o

e Approximate F with FO, that is the empirical distribution of data z;.
e Repeat B times:

— Draw a sample z; from Fj.

— Evaluate the test statistic on z;:

*
Zy, — [0

t(z7)) =
INCTT
e Finally, evaluate the p-value of the test as:

. #t(m) 2 X))
K PB B .

alessia.pini@unicatt.it
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Assume that we observe two independent samples:
e z: sample of size m drawn from the unknown distribution F', u, = E[F].
e y: sample of size n drawn from the unknown distribution G, p, = E[G].

We now want to test mean differences between the two groups, that is testing
the hypotheses:
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BETWEEN TWO SAMPLES

Assume that we observe two independent samples:
e z: sample of size m drawn from the unknown distribution F', u, = E[F].
e y: sample of size n drawn from the unknown distribution G, p, = E[G].

We now want to test mean differences between the two groups, that is testing
the hypotheses:

Estimating Fy and Gg: under Hy, F' and G have the same mean. So, we
estimate the sample distributions Fy and Gy by first translating both samples
so that they have a common mean, and then computing separately the two
empiric distributions:

Yi =Y —Y+7T
T = (Z%—I—Zyz> /(n+m)
=1 =1

alessia.pini@unicatt.it

50



% e  TESTING MEAN DIFFERENCES

A > CATTOLICA

P
X ~&  del Sacro Cuore
EDIOL AN

Bootstrap data sets: We draw a sample of size n from Fy and a sample of
size n from Gj.

Test statistic: The test statistic can be borrowed from the classical paramet-
ric case (studentized statistic, similar to the one used for the construction of
Bootstrap-t confidence intervals).

In the case of assuming equal variances:

Z-7
V55 G+

with 322) is the pooled estimate of the variance.
In the case of assuming unequal variances:

t(x) =

)

3|~
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Assume that we observe pairs (c;,¥;) for i = 1,... ,n. We assume that data
follow the linear regression model

p
yi = ¢ +e = Z CijBj + €i
j=1
where ¢; is an i.i.d. sample from an unknown distribution F' with Elg;] = 0,
Varlg;] = o2 Vi.
We want to test, for j =1,...,p:
Hoy: Bk =0
Hy: B # 0
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Estimating the null distribution.

Under the null hypothesis, the model reduces to: Null model:
model under the
yi =) ciiB +ei = [eidgwBo +eu null hypothesis
j#k

So, the null model Py = (8, Fo) can be estimated with Py = (B, Fy) where 3,
is the OLS estimator of 3, and Fy the empirical distribution of the residuals of
the null model.
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Bootstrap data sets. )
Bootstrap data sets are generated sampling the residuals €* from F{, and then
plugging-them in the null model:

y;k - ZC’UBJ'O + 8: - [Ci](k:)/éo + 8:.
J#k

Test statistic.
As test statistic we can use the classical t-test statistic:

A

Bk

se(SBr) OLS estimate on the
original model.

t(x) =
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